NARASIMHA REDDY ENGINEERING COLLEGE (Autonomous)

 Approved by AICTE, New Delhi \& Affiliated to JNTUH,

 Approved by AICTE, New Delhi \& Affiliated to JNTUH, Hyderabad
 Accredited by NAAC with A Grade, Accredited by NBA

COMPUTER SCIENCE ENGINEERING

QUESTION BANK

Course Title : COMPUTER ORIENTED STATISTICAL METHODS
Course Code : MA2103BS
Regulation : NR21

Course Objectives

1. To learn theory of probability and probability distributions of single and multiple random variables.
2. The sampling theory and testing of hypothesis and making inferences.

Course Outcomes (CO's)

1. Apply the concept of Probability and distribution to some case studies,
2. Correlate the material of one unit to the material in other units.
3. Resolve the potential misconceptions and hazards in each topics of study.

UNIT-I

PROBABILITY

S.No	Questions				BT	CO	PO
Part - A (Short Answer Questions)							
1	Define conditional probability.					CO1	PO1
2	Define pairwise independent events.				L1	CO1	PO3
3	Suppose a continuous random variable X has a probability density function $f(x)=k\left(1-x^{2}\right)$ for $0<x<1$ and $f(x)=0$ otherwise, then find k.				L3	CO1	PO1
4	For the following probability distribution find $\mathrm{E}(\mathrm{x}), \mathrm{E}\left(\mathrm{x}^{2}\right)$, $\mathrm{E}\left[(2 \mathrm{x}+1)^{2}\right]$				L3	CO1	PO 2
	$\begin{array}{\|l\|} \hline \mathrm{X} \\ \hline \mathrm{P}(\mathrm{x}) \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline 9 \\ \hline 1 / 3 \\ \hline \end{array}$			

	5	Write the relation between raw and central moments.	L1	CO1	PO2
	6	An integer is chosen at random from the first 200 positive integers. What is the probability that the integer chosen is divisible by 6 or by 8 .	L3	CO1	PO1
	7	A bag contains 3 white and 5 black balls. If a ball is drawn at random find the probability for it to be black.	L3	CO1	PO1
	8	Write the formulas of skewness and kurtosis in terms of moments.	L1	CO1	PO1
	9	A bag contains 50 tickets numbered $1,2,3, \ldots 50$. Of which 5 are drawn at random and arranged in ascending order of the magnitude. What is the probability that the middle one is 30 ?	L2,L3	CO1	PO2
	0	In a single throw with two dice find the probability of throwing a sum 10.	L3	CO1	PO 2
Part - B (Long Answer Questions)					
11	a)	State and prove Bayes theorem.	L1	CO1	P01
	b)	Of the three men, the chances that a politician, a businessman or an academician will be appointed as a vice-chancellor (V.C) of a university are $0.5,0.3,0.2$ respectively. Probability that research is promoted by these persons if they are appointed as V.C are $0.3,0.7,0.8$ respectively. i) Determine the probability that research is promoted. If the research is promoted what is the probability that V.C is ii) academician? iii) Business man iv) Politician	L1,L3	CO1	P02
13		The probability density $f(x)$ of a continuous random variable is given by $f(x)=c e^{-\|x\|},-\infty<x, \infty$ Show that $\mathrm{c}=1 / 2$ and i. Find that the mean and variance of the distribution. ii. Find the probability that the variate lies between 0 and 4 . iii. Find the probability that $\mathrm{x}>6$.	L3,L4	CO1	PO3

UNIT-II

MATHEMATICAL EXPECTATIONS AND DISCRETE PROPABIBLITY

 DISTRIBUTIONS| S. No | Questions | BT | CO | PO |
| :---: | :--- | :---: | :---: | :---: |
| Part - A (Short Answer Questions) | | | | |
| 1 | Define expectation of a random variable X | L1 | CO2 | PO1 |
| 2 | Define variance of a random variable X for discrete and
 continuous cases. | L1 | CO2 | PO1 |
| 3 | Let X be a random variable with density function | L3 | CO2 | PO2 |

		$f(x)=\left\{\begin{array}{l} \frac{x^{3}}{3},-1<x<2 \\ 0, \text { else where } \end{array}\right.$ Find the expected value of $g(x)=4 x+3$								
4		Let the random variable X represent the number of defective parts for a machine when 3 parts are sampled from a production line and tested. The following is the probability distribution of X .						L3	CO2	PO2
	5	20% of item produced from a factory are defective. Find the probability that in a sample of 5 chosen at random $\mathrm{P}(1<\mathrm{x}<4)$.						L3	CO 2	PO2
	6	If the probability of a defective bolt is 0.2 find the mean and variances of the number of successes.						L3	CO2	PO2
	7	Define geometric distribution.						L1	CO 2	PO1
	8	If a random variable has a Poisson distribution such that $\mathrm{P}(1)=\mathrm{P}(2)$, find mean of the distribution.						L3	CO2	PO2
	9	Using Poisson distribution, find the probability that the ace of spades will be drawn from a pack of well shuffled cards at least once in 104 consecutive trials.						L3	CO2	PO2
	10	In 256 set of 12 tosses of a coin, in how many cases one can expect 8 heads and 4 tails.						L3	CO 2	PO2
Part - B (Long Answer Questions)										
11		Seven coins are tossed and the number of heads are noted. The experiment is repeated 128 times and the following distribution is obtained. Fit a Binomial Distribution to the following data assuming the coin is unbiased						L3,L5	CO 2	PO3
12	a)	Using recurrence formula find the probabilities when $\mathrm{X}=0,1,2,3,4$ and 5 , if the mean of Poisson distribution is 3 .						L3,L5	CO2	PO3
	b)	If the probability that an individual suffers a bad reaction from a certain injection is 0.001 , determine the probability that out of 2000 individuals i. Exactly 3 ii. More than 2 individuals iii. None						L3	CO2	PO2

			More than one individual suffers bad reaction						
13	a)	Derive mean and variance of Geometric Distribution The weekly demand for a drinking-water product, in thousands of liters, from a local chain of efficiency stores is a continuous random variable X having the probability density. Find mean and variance.$f(x)=\left\{\begin{array}{c} 2(x-1) ; 1<x<2 \\ 0 ; \text { else where } \end{array}\right.$					L1	CO 2	PO1
	b)						L3	CO 2	PO2
14		Out of 800 families with 5 children each, how many would you expect to have a. 3boys b. 5 girls c. At least one boy d. Mean e. Variance					L3,L4,L5	CO 2	PO3
15	a)	Derive mean and variance of Poisson distribution					L1	CO 2	PO1
	b)	A die is tossed until 6 appears. Find the probability that it must be cast more than 5 times.					L2	CO 2	PO 2
16	a)	If a Poisson Distribution is such that $\frac{3}{2} P(X=1)=$ $P(X=3)$. Find i. $\quad \mathrm{P}(\mathrm{X} \geq 1)$ ii. $\quad \mathrm{P}(\mathrm{X} \leq 3)$					- L2	CO 2	PO2
	b)						L3	CO 2	PO2
		Calculate the variance of $g(X)=2 X+3$, where X is a random variable with the following probability distribution				$1 / 8$			

UNIT-III
CONTINUOUS PROBABILITY DISTRIBUTION

S.No	Questions	BT	CO	PO		
Part - A (Short Answer Questions)						
1	State the conditions under which Normal distribution is a limiting case of Binomial.	L1	CO3	PO1		
2	If X is a Normal variate with mean 30 and standard deviation 5. find P(26 $\leq \mathrm{X} \leq 40)$.	L2	CO3	PO2		
3	Define Normal distribution.	L1	CO3	PO1		

UNIT-IV

TESTING OF HYPOTHESIS- LARGE SAMPLE

S.No	Questions	BT	CO	PO
Part - A (Short Answer Questions)				
1	Define Type-I and Type-II error	L1	CO4	PO1
2	Define critical region and acceptance region.	L1	CO4	PO1
3	Explain Null and Alternative Hypothesis.	L4	CO4	PO1
4	Write Standard error formula for Method of Substitution and Method of Pooling in Proportions.	L1	CO4	PO1

	5	The mean and standard deviation of a population are 11795 and 14054 respectively. If $n=50$, find 95% confidence interval for the mean.				L3	CO4	PO1
	6	A die is tossed 256 times and it turns up with an even digit 150 times. If the die is biased find the test statistic value.				L3	CO4	PO1
	7	If $n=400, \bar{x}=40, \mu=38, \sigma=10$ then find the 95% confidence limits for the population.				L1	CO4	PO1
	8	A random sample of 500 pineapples was taken from a large consignment and 65 were found to be bad. Find the percentage of bad pineapples in the consignment.				L2,L3	CO4	PO1
	9	Given $n_{1}=1200, n_{2}=900, P_{1}=0.3, P_{2}=0.25$ then find the test statistic value for difference of two proportions of large samples.				L2	CO4	PO1
	10	Define Level of Significance.				L1	CO4	PO1
Part - B (Long Answer Questions)								
11	a)	A sample of 64 students have a mean weight of 70 kgs . Can this be regarded as a sample from a population with mean weight 56 kgs and standard deviation 25 kgs .				L3,L4	CO4	PO2
	b)	Explain the steps involved in the procedure for testing of Hypothesis				L2,L4,L5	CO4	PO3
12	a)	The mean yield of wheat from a district A was 210 pounds with S.D 10 pounds per Acre from a sample of 100 plots. In another district the mean yield was 220 pounds with S. D 12 pounds from a sample of 150 plots. Assuming that the S.D of yield in the entire state was 11 pounds ,test whether there is any significant difference between the mean yield of crops.				L1,L4,L5	CO4	PO3
	b)	Samples of students were drawn from two universities and from their weights in kilograms, mean and standard deviation are calculated and shown below. Make a large sample test to test the significance of the difference between the means				L3,L4	CO4	PO2
		University A University B	Mean 55 57	$\begin{array}{\|l\|} \hline \text { S.D } \\ \hline 10 \\ \hline 15 \\ \hline \end{array}$	Size of the sample 400 100			

13	a)	A die was thrown 9000 times and of these 3220 yielded a 3 or 4. Is this consistent with the hypothesis that the die was unbiased?	L2,L3	CO4	PO3
b)	Random samples of 400 men and 600 women were asked whether they would like to have a flyover near their residence. 200 men and 325 women were in favor of the proposal. Test the hypothesis that proportions of men and women in favor of proposal are same at 5\% level.	L3,L4	CO4	PO3	
14	a)	A cigarette manufacturing firm claims that its brand A line of cigarettes outsells its brand B by 8\%. If it is found that 42 out of a sample of 200 smokers prefer brand A and 18 out of another sample of 100 smokers prefer brand B, test whether the 8\% difference is a valid claim.	L3,L4	CO4	PO3
b)	In two large populations, there are 30\% and 25\% respectively of fair-haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations.	L3,L4	CO4	PO3	
15	a)	Write a short note on one-tailed and two-tailed tests.	L1,L4	CO4	PO1
b)	Explain Type-I and Type-II errors in detail with one example each.	L1,L4	CO4	PO1	
16	a)	It is claimed that a random sample of 49 tyres has a mean life of 15200kms. This sample was drawn from a population whose mean is 15150kms and a standard deviation 1200 kms. Test the significance at 0.05 level for H1: $\mu \neq 15200$	L1,L3	CO4	PO2
b)	In a sample of 1000 people in Telangana 540 are rice eaters and the rest are wheat eaters. Can we assume that both rice and wheat are equally popular in this state at $1 \% ~ l e v e l ~ o f ~$ significance.	L3,L4	CO4	PO3	

UNIT-V
CORRELATION AND REGRESSION

S.No	Questions	BT	CO	PO
Part - A (Short Answer Questions)				
1	Define correlation and regression.	L1	CO5	PO1
2	Write a short note on types of correlation.	L1	CO5	PO1
3	Criticize the following: Regression coefficient of Y on X is 0.7 and that of X on Y is 3.2.	L2,L4	CO5	PO2
4	If θ is the angle between two regression lines and standard deviation of Y is twice the standard deviation of X and $\mathrm{r}=0.25$, find $\tan \theta$.	L2,L3	CO5	PO1

* Blooms Taxonomy Level (BT) (L1 - Remembering; L2 - Understanding; L3 - Applying;

L4 - Analyzing; L5 - Evaluating; L6 - Creating)
Course Outcomes (CO)Program Outcomes (PO)

Prepared By:
P MAHENDRA VARMA
ASSISTANT PROFESSOR
MATHEMATICS, H\&S

